a2 United States Patent

Jahanbanifar et al.

US009432301B2

US 9,432,301 B2
*Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

7,555,544 Bl
2008/0275973 Al*

DEFINING DISJOINT NODE GROUPS FOR
VIRTUAL MACHINES WITH PRE-EXISTING
PLACEMENT POLICIES

Applicant: TELEFONAKTIEBOLAGET L M
ERICSSON (PUBL), Stockholm (SE)

Inventors: Azadeh Jahanbanifar, Montreal (CA);
Maria Toeroe, Montreal (CA)

Assignee: TELEFONAKTIEBOLAGET L M
ERICSSON (PUBL), Stockholm (SE)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 534 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/872,680
Filed: Apr. 29, 2013

Prior Publication Data

US 2014/0325036 Al Oct. 30, 2014

Int. CL.

GO6F 15/177 (2006.01)

HO4L 12911 (2013.01)

GO6F 9/50 (2006.01)

U.S. CL

CPC HO4L 47/70 (2013.01); GO6F 9/5077

(2013.01)
Field of Classification Search
CPC i GOG6F 9/5077; HO4L 47/70
USPC 709/220, 223
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

6/2009 Rattner et al.
1172008 TOEro€occoovvvvovivverinnn 709/223

2009/0274157 Al 11/2009 Jayasimha et al.
2012/0240129 Al 9/2012 Kanso et al.
2014/0317620 Al* 10/2014 Farkas et al. 718/1

FOREIGN PATENT DOCUMENTS

WO WO-2011069664 6/2011

OTHER PUBLICATIONS

Service Availability Forum Application Interface Specification,
“Availability Management Framework,” SAI-AIS-AMF-B.04.01,
The Perl Foundation, reissued Sep. 30, 2011, 452 pages.

Service Availability Forum Application Interface Specification,
“Cluster Membership Service,” SAI-AIS-CLM-B.04.01, The Perl
Foundation, reissued Sep. 30, 2011, 84 pages.

(Continued)

Primary Examiner — Joseph E Avellino

Assistant Examiner — Marshall McLeod

(74) Attorney, Agent, or Firm — Nicholson, De Vos,
Webster & Elliot, LLP

(57) ABSTRACT

Disjoint node groups are generated for a node cluster to
guarantee hardware redundancy for each service group to be
configured on the node cluster. Each service group includes
service units, and each service unit is a unit of redundancy
for services provided and protected by the service group.
Hardware dependency is identified between virtual
machines in the node cluster and hardware elements to host
the virtual machines. A first node group set (NG set) is
formed using a first criterion to select the virtual machines
into different node groups based on the hardware depen-
dency, such that there is no common hardware element
between any two node groups in the first NG set. The first
NG set is mapped to a first set of service groups. Different
node groups of the first NG set are mapped to different
service units in each service group of the first set of service
groups.

18 Claims, 8 Drawing Sheets

800
e

810

Identifying a hardware dependency between virtual machines in
the node cluster and hardware elements to host the virtual
machines

!

Form a first NG set of node groups using a first selection
criterion to select the virtual machines into different node groups.
based on the hardware dependency, such that there is no
common hardware element between any two of the node
groups in the first NG set
820

!

Map the first NG set to a first set of the service groups

l

Map different node groups of the first NG set to different service
units in each service group of the first set of service groups
4

US 9,432,301 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Service Availability Forum Application Interface Specification,
“Overview,” SAI-Overview-B.05.03, The Perl Foundation, reissued
Sep. 30, 2011, 68 pages.

Service Availability Forum Application Interface Specification,
“Platform Management Service,” SAI-AIS-PLM-A.01.02, The Perl
Foundation, reissued Sep. 30, 2011, 186 pages.

Extended European Search Report, Counterpart European Patent
Application No. 14001399.6, dated Mar. 23, 2016, 7 pages.

Machida, et al., “Redundant virtual machine placement for fault-

tolerant consolidated server clusters,” Network Operations and
Management Symposium (NOMS), IEEE, Apr. 19, 2010, pp. 32-39.

* cited by examiner

US 9,432,301 B2

Sheet 1 of 8

Aug. 30, 2016

U.S. Patent

gl '9Ol4

¢3H

g puess "\
\

8AIOY

V1l 'Old
¢dH rm_Ix
CININA LININA
4 A LINA
¢NS | LOS | INS
—_

kg pueig s
\

aAnoY

US 9,432,301 B2

Sheet 2 of 8

Aug. 30,2016

U.S. Patent

¢ 9Ol
Aouspuadas
SO SO puada(
el | A AR | e NINA
dH
042 10elqo urewiog

urewop Wid —

0€Z uoieay
Kouspusdsq

022 Uohejay
JUBLUUIBIUOD)

U.S. Patent

Aug. 30, 2016

Sheet 3 of 8

US 9,432,301 B2

VMMI | VMM2 | VMM3 | VMM4 | VMMS5
V1| HEI HE2
V2 | HEI HE3 HES
V3 HE2 HE3
V4 HE4 HES
V5 | HEI HE4
Vo HE2 HE3

FIG. 4

U.S. Patent

Aug. 30, 2016

C o

Create set A containing all
nodes and set i=min HE(s)
on which the nodes in A
depend 510

Create disjoint NGs
Each NG having nodes with
only i HE(s)
Remove these nodes from
set A 520

in A, if N has common~_No
E with the defined NG

Delete node N from A and
put it in Leftovers set 540

!

i=i++ 550

FIG. 5

Sheet 4 of 8

US 9,432,301 B2

500

For each node in
Leftovers, find the NG

with max common HEs
580

Adding the
ode to NG violates N
disjoint rule?
590

Do not add the
node to the NG
591

NG 592

Add the node to the

Figure 5 : Flow chart of the first algorithm for defining disjoint NGs

U.S. Patent

=

Create set A containing all
nodes 610

!

Identify nodes that have
maximum common HEs and
~=»| put the nodes in one NG.
Remove the nodes from set

A 620

or each node
in A, if N has common
E with the defined NGg
630

Delete node N from A and
putitin Leftovers set 640

Aug. 30, 2016

FIG. 6

Sheet 5 of 8

600

For each node in
Leftovers, find the NG

with max common HEs
680

Adding the
ode to NG viclates N
disjoint rule?
690

US 9,432,301 B2

Do not add the
node to the NG
692

Add the node fo the
NG 692

Flow chart of the second algorithm for defining

disjoint NGs

US 9,432,301 B2

L9l

‘‘‘‘‘‘‘‘‘‘‘ @ GA e SIBAOYET
SO e Tt

Sheet 6 of 8

Aug. 30, 2016

@06

U.S. Patent

GaH ||
o= B \
ans H—T1 e yan | L_ZON/LeS ON T~ ans
ZON/ZI®S ON .
3 ~_ e
// @ — ¢3H \\\.\ @
- v 198
LON/ZI98 ON 134 LON/13es ON

2198 ON 1188 ON

U.S. Patent Aug. 30, 2016 Sheet 7 of 8 US 9,432,301 B2

800

Identifying a hardware dependency between virtual machines in
the node cluster and hardware elements to host the virtual
machines
810

'

Form a first NG set of node groups using a first selection
criterion to select the virtual machines into different node groups
based on the hardware dependency, such that there is no
common hardware element between any two of the node
groups in the first NG set
820

'

Map the first NG set to a first set of the service groups
830

'

Map different node groups of the first NG set to different service
units in each service group of the first set of service groups
840

FIG. 8

US 9,432,301 B2

Sheet 8 of 8

Aug. 30, 2016

U.S. Patent

6 Ol4 WHOMLAN
026
E— \
226 7 HOLYHNOIANDD _
I 301A30 30VIINI
lllll MIOMLIN
AHONEW AMYANOD3S
gL6 —~ 806 — A
\
06 LOINNODYILNISNG
A
Y
T _ |[—— == N
226 7™ HOLYHNDIANDD | | luosvenoinoa |
L e, 26l | | _
006 W3LSAS ¥3LNdINOD AHONIN NIV Lo— ===
2 301A30 ONISSINOY
506 — 206 —

US 9,432,301 B2

1
DEFINING DISJOINT NODE GROUPS FOR
VIRTUAL MACHINES WITH PRE-EXISTING
PLACEMENT POLICIES

TECHNICAL FIELD

Embodiments of the invention relate to platform manage-
ment for highly available services; and more specifically, to
providing hardware redundancy for highly available ser-
vices in virtualized or cloud architectures.

BACKGROUND

The Service Availability Forum (SA Forum) is a consor-
tium of industry-leading companies promoting a set of open
specifications that enables the creation and deployment of
highly available, mission critical services. As a standardiza-
tion body, the SA Forum has defined a set of open specifi-
cations for middleware services including the Application
Interface Specification (AIS) (SA Forum, Service Availabil-
ity Interface, Overview, SAI-Overview-B.05.03) which con-
sists of different services to enable and manage high avail-
ability services. Service availability in the AIS architecture
is provided by using software and hardware redundancy
techniques.

The Availability Management Framework (AMF) is one
of the AIS services that supports and manages service
availability by coordinating and managing redundant soft-
ware entities within a cluster. A cluster is a logical cluster
that includes a number of cluster nodes (also referred to as
“nodes”). These nodes host various resources in a distributed
computing environment. An application that is managed by
the AMF to provide service availability is structured into
logical entities according to the model expected by the AMF.

The AMF manages redundant service units to ensure
service availability in case of failures. These redundant
service units are grouped into a service group to guarantee
service availability for a particular set of service instances.
Each service instance represents workload incurred by the
provision of services. At runtime the AMF assigns each
service instance to a set of service units; some of the service
units actively provide the associated service, and the other
service units may standby to protect the service in case of a
failure of the active service units.

Accordingly, if the service units of a service group that
participate in the provisioning and protecting of a service
instance are placed on the same hardware, the failure of this
hardware causes all these service units to fail and the service
associated with the service instance is interrupted. There-
fore, there is a need to protect against the impact of hardware
failures to ensure service availability.

SUMMARY

Embodiments of the invention provide a method and a
system for generating disjoint node groups for a node
cluster. The use of disjoint node groups guarantees hardware
redundancy for each service group to be configured on the
node cluster. Each service group includes service units, and
each service unit is a unit of redundancy for services
provided and protected by the service group.

In one embodiment, a method of generating disjoint node
groups for a node cluster is described. The method identifies
hardware dependency between virtual machines in the node
cluster and hardware elements to host the virtual machines.
A first node group set (NG set) of node groups is formed
using a first selection criterion to select the virtual machines

10

25

30

35

40

45

55

2

into different node groups based on the hardware depen-
dency, such that there is no common hardware element
between any two of the node groups in the first NG set. The
first NG set is mapped to a first set of the service groups.
Different node groups of the first NG set are mapped to
different service units in each service group of the first set of
the service groups.

In another embodiment, a computer system is described.
The computer system comprises a processor and a memory.
The memory contains instructions executable by the pro-
cessor, whereby the computer system is operative to perform
the method of generating disjoint node groups for a node
cluster as described above.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings in which like references indicate similar
elements. References in the disclosure to “one embodi-
ment,” “an embodiment,” “an example embodiment,” etc.,
indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same embodiment. Fur-
ther, when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to
effect such feature, structure, or characteristic in connection
with other embodiments whether or not explicitly described.

FIG. 1A illustrates an example of a service instance
assignment protected by hardware redundancy according to
one embodiment.

FIG. 1B illustrates an example of a service instance
assignment that is not protected by hardware redundancy
according to one embodiment.

FIG. 2 illustrates a simplified model of a Platform Man-
agement (PLM) configuration according one embodiment.

FIG. 3 illustrates an example of a PLM configuration
according one embodiment.

FIG. 4 illustrates an example of a hardware dependency
table according to one embodiment.

FIG. 5 is a flow diagram illustrating a first method for
identifying disjoint node groups according to one embodi-
ment.

FIG. 6 is a flow diagram illustrating a second method for
identifying disjoint node groups according to one embodi-
ment.

FIG. 7 illustrates how different node group sets can be
used for different service groups according to one embodi-
ment.

FIG. 8 is a flow diagram illustrating a method for iden-
tifying disjoint node groups according to one embodiment.

FIG. 9 illustrates a diagrammatic representation of a
computer system according to one embodiment.

2 <

DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details are
set forth. However, it is understood that embodiments of the
invention may be practiced without these specific details. In
other instances, well-known circuits, structures and tech-
niques have not been shown in detail in order not to obscure
the understanding of this description. It will be appreciated,
however, by one skilled in the art, that the invention may be
practiced without such specific details. Those of ordinary

US 9,432,301 B2

3

skill in the art, with the included descriptions, will be able
to implement appropriate functionality without undue
experimentation.

Embodiments of the invention provide a mechanism for
defining disjoint node groups to ensure hardware redun-
dancy. The node groups are defined using an existing
platform management setup that supports virtualization and
virtual machine (VM) migration. Each node group includes
one or more nodes, where each node represents or corre-
sponds to one VM. Two node groups are disjoint if they do
not have (or more precisely, do not depend on) any hardware
element (HE) in common. Based on the hardware depen-
dencies among the nodes, disjoint node groups are created
and then used by the AMF to configure and instantiate
service units within a service group. Different service units
within a service group are mapped to different node groups
to ensure hardware redundancy for the service instance that
is assigned to the different service units. Providing hardware
redundancy is crucial for highly available services.

The mechanism may be used in a virtualization environ-
ment, where operations of the service units are performed by
VMs. The resulting AMF configuration can be deployed on
a system provider’s system; for example, a cloud computing
provider’s system.

The mechanism provided herein enables the distribution
of the service units of a service group on different HEs in
disjoint node groups. If the service units of a service group
that participate in the provisioning of a service instance are
placed on the same hardware, the failure of this hardware
causes the interruption of the service instance. The examples
of FIGS. 1A and 1B illustrate the scenarios of having
disjoint node groups versus having non-disjoint node
groups.

FIG. 1A is a block diagram illustrating an example of a
service instance Sl assigned to an active service unit SU1
and a standby service unit SU2 in a service group SG. In this
example, SU1 is mapped to VM1 hosted on a virtual
machine monitor (or hypervisor) VMMI1, which is in turn
hosted on a hardware element HE1. SU2 is mapped to VM2
hosted on VMM2, which is in turn hosted on a hardware
element HE2. If HE1 fails, the assignment of SI can failover
to SU2 on VM2 and HE2. As there is no hardware depen-
dency (i.e., no common hardware element) between VM1
and VM2, the node group of VM1 is disjoint from the node
group of VM2; therefore, hardware redundancy is guaran-
teed in the assignment of SI.

FIG. 1B is a block diagram illustrating another example
of the same SI assigned to SU1 and SU2. In this example,
both VM1 and VM2 are hosted on VMM1, which in turn is
hosted on HE1. Although SU1 and SU2 are mapped to
different VMs, if HEI] fails, both SU1 and SU2 will fail
because VM1 and VM2 have or depend on the same
hardware element HE1. In the example of FIG. 1B, the node
group of VM1 and the node group of VM2 are not disjoint
because these two node groups depend on a common
hardware element HE1. There, hardware redundancy is not
guaranteed in the assignment of SI.

One embodiment of the invention provides multiple
approaches for defining disjoint node groups that can host
redundant entities of a node cluster. The approaches can be
used in conjunction with the AMF or any other application
that manages software redundancy. Thus, service availabil-
ity is immunized against not only software failures but also
hardware failures.

Before describing the mechanism for defining disjoint
node groups in detail, it is helpful to explain some basic
concepts relating to AMF configurations. In addition to the

10

15

20

25

30

35

40

45

50

55

60

65

4

AME, the AIS also defines a Cluster Membership (CLM)
service. The CLLM service is responsible for the formation
and maintenance of a node cluster. All of the AIS services
including the AMF use only nodes admitted to the node
cluster by the CLM and rely on the CLM for the current
membership information. A CLM node hosts an AMF node.
An AMF node is a logical entity that represents a complete
inventory of all AMF entities that are configured to be hosted
on a CLM node.

The Platform Management (PLM) service is yet another
AIS service which is responsible for providing a logical
view of hardware (i.e., HEs) and low-level software includ-
ing operating systems (OSs) and virtualization layers (re-
ferred to as Execution Environments (EEs)) to other services
including the CLM. This logical view is provided through
the PLM configuration, as part of the information model of
the SA Forum.

FIG. 2 illustrates an example of a simplified model of a
PLM configuration that includes a hierarchical structure of
PLM entities (HEs and EEs) under a PLM domain object
210. All of the VMs and HEs are direct children of the PLM
domain object 210. VMMs are children of the HEs hosting
the VMM s. In this simplified model, the relation among the
PLM entities can be defined in two ways. The first relation
among the PLM entities is a containment relation 220, e.g.,
an HE object (e.g., hardware) contains an EE object (e.g., a
VMM) when the VMM is hosted on the hardware. The
second relation among the PLM entities is a dependency
relation 230, which is defined through a PLM dependency
class in the PLM configuration model. This PLM depen-
dency class includes the name of the dependant object, the
names of sponsor objects, and the number of sponsors that
should be present and actively sponsor dependent entities
such that the dependent entity can provide service. The term
“to sponsor” as used herein means “to provide service or
support.” With respect to virtualization, the PLM configu-
ration model can be refined to distinguish the PLM EE
objects that represent an OS instance, a VM or a VMM.

To allow VM migration, the EEs representing VMs can be
placed in the PLM configuration model as children of the
PLM domain object. Each such VM can host one OS
instance, which in turn may host a CLM node. The VMMs
eligible for hosting a given VM are listed in a dependency
object associated with the VM. This means that the PLM and
the underlying virtualization layer can migrate the VM
among the listed VMMs.

The mapping of AMF node, CLM node and PLM EE is
one to one. In the following description, the term “node” or
“cluster node” means an AMF node which is mapped on a
CLM node that resides on a VM (which is a PLM EE). As
used herein, the terms “node” and “VM” are used inter-
changeably, and the term “node group” refers to a group of
VMs.

Given a PLM configuration, disjoint node groups are
defined and used by the AMF to configure service units at
the AMF level. Having a definition of disjoint node groups
eliminates the need for the AMF to interpret the details of the
PLM configuration model. Furthermore, having a definition
of disjoint node groups allows VM migration between HEs
at the PLM level independently from the AMF.

In one embodiment, one or more node group sets (NG-
sets) are defined and formed based on the information of the
PLM configuration for a node cluster. Each NG-set includes
a number of disjoint node groups. Each NG-set can be used
to configure a service group by configuring the node groups
of the NG-set for the different service units of the service
group. This way hardware redundancy is provided for the

US 9,432,301 B2

5

service units of a service group. The number of node groups
in the NG-set determines the number of service units in the
service group for which hardware redundancy can be pro-
vided with the given NG-set.

In one embodiment, an NG-set is defined for a given PLM
configuration using a criterion for selecting VMs into dif-
ferent node groups. The NG-set can be used by one or more
service groups that are configured on the node cluster having
the given PLM configuration. In one embodiment, for a
given PLLM configuration, more than one criterion can used
to define multiple different NG-sets. The different NG-sets
can be used to configure different service groups of the same
node cluster, thus improving VM utilization as well as
hardware utilization.

To define the NG-sets, a starting point is the PLM
configuration containing the information about HEs, EEs
and their types and relations, where EEs representing VMs
are located directly under the PLM domain object and the
VMM eligible for hosting each VM is listed in the depen-
dency object of the VM. On the other hand, VMMs are
represented in the PLM configuration as leaf EEs of the
branches that contain HEs as ancestors to these EEs.

In one embodiment, the information of the PLM configu-
ration can be organized in a table or another data structure,
which shows the relation of nodes to the HEs. The table is
used to group VMs with different hosting HEs. From the
PLM dependency objects in the PLM configuration, the
VMMs hosting the VMs can be identified, and from the
VMM’ ancestors in the PLM configuration, the HEs that
each VM has (i.e., depends on) can be identified. This
information is referred to as “hardware dependency” and can
be expressed in a hardware dependency table or another data
structure.

FIG. 3 illustrates an example PLM configuration accord-
ing to one embodiment. In this example, the containment
relation is shown as the connections between HEs and
VMMs. The dependency relation is shown as the connec-
tions between VMMs and VMs (V1-V6). The example
shows that a VM can migrate between the VMMs that are
hosted on different HEs. FIG. 4 shows an example of a
hardware dependency table constructed from the PLM con-
figuration of FIG. 3. The columns of the table represent the
VMM and their hosting HEs, which is the ancestor HE of
a VMM. In reality there may be many ancestor HEs for a
VMM; e.g., a hosting HE may be a board of a blade system
where there are different shelves in a cabinet. In this case,
each of the hardware aggregation can be shown as an
ancestor HE having many children HEs. For example, from
the top level the cabinet HE has many shelf HEs, each of
which has many blade HEs. The HE analyzed here should be
the ancestor HE the failure of which needs to be tolerated,
and the failure of against which needs to be protected. In the
example of FIG. 4, VMM1 is hosted on HE1, VMM2 hosted
on HE2 and VMM3 and VMM4 both hosted on HE3. The
rows of the table represent the VMMs eligible for hosting
the VMs based on their dependency information. For
example, V1 can be hosted by VMM1 or VMM3, and
accordingly on HE1 or HE3. V2 can be hosted on VMM1 or
VMM2, and accordingly on HE1 or HE2.

From these relations of the VMs with HEs, one or more
NG-sets can be defined with each NG-set including disjoint
NGs. Two example methods for defining NG-sets are
described below with reference to the flow diagrams of FIG.
5 and FIG. 6. The two methods use different criteria for
selecting VMs into node groups. The criteria are different
with respect to the characteristics of the hardware depen-
dency used for selecting the VMs. Although two methods

20

30

40

45

6

are described, it is understood that additional methods exist
that use additional different criteria for selecting VMs into
node groups. Some of these methods may produce the same
NG-set. Some of these methods may produce different
NG-sets. Some of these methods may produce a more
balanced NG-set (with respect to the number of HEs and/or
VMs in each node group) than some of the other methods.
The duplicated NG-set and the NG-set that is overly unbal-
anced (e.g., an NG-set having only one node group) can be
left unused.

FIG. 5 is a flow diagram illustrating a first method 500 for
identifying disjoint node groups according to one embodi-
ment. The method 500 starts with initializing a set A
containing all of the VMs, and a loop index i is set to the
minimum number of HEs on which the VMs in set A depend
(block 510). One or more disjoint node groups are created,
where each node group contains one or more VMs that
depend on i numbers of HEs (block 520). These VMs are
then removed from set A.

In the example hardware dependency of FIG. 4, set A is
initialized to {V1,V2,V3,V4,V5V6}. The minimum num-
ber of HEs is two, as none of the VMs in set A depend on
less than two HEs. The first VM in set A having two HEs
(HE1 and HE2) is V1. Thus, V1 is selected into a node group
NG1, where NG1(HE1, HE2)={V1}. Further, V4 depends
on two HEs (HE4 and HE5), which do not have any HE in
common with NG1. Thus, V4 is selected into a node group
NG2, where NG2(HE4, HE5)={V4}. Afterwards, V1 and
V4 are removed from set A, and A={V2, V3, V5, V6}.

The method 500 proceeds to determine whether any VMs
in set A have a common HE with any of the defined NGs
(e.g., NG1 and NG2) (block 530); if there is, the VM is
removed from set A and placed into a Leftovers set (block
540). Once none of VMs in set A have a common HE with
the defined NGs, the method 500 proceeds to increment the
loop index i (block 550) and repeats the operations of blocks
520 to 550 until set A becomes empty (block 560).

In the example of FIG. 4, V2 is placed into the Leftovers
set as V2 has HE1 in common with V1, and V3 is also placed
into the Leftovers set as V3 has HE2 in common with V1.
For the same reasons V5 and V6 are also placed into the
Leftovers set. V2, V3, V5 and V6 are removed from set A.
At this point, NG1(HE1, HE2)={V1}, NG2(HE4, HE5)=
{V4}, A={ } and Leftovers={V2, V3, V5, V6}.

After the VMs are placed in the Leftovers set, the method
500 proceeds to increment the loop index i (block 550) and
repeats the operations of blocks 520 to 550 until set A
becomes empty (block 560). That is, the VMs in set A that
depend on three or more HEs are placed in previous-formed
node groups, new node groups, or in the Leftovers set until
set A becomes empty.

When set A becomes empty, the method 500 proceeds to
handle the VMs in the Leftovers set. For each VM in the
Leftovers set, the method 500 finds the node group with
which the VM has the maximum common HEs (block 580),
and checks whether adding the VM to that node group
violates the node group disjoint rule (block 590). The node
group disjoint rule specifies that no two node groups can
have any hardware element in common. If adding the VM to
a node group violates the node group disjoint rule, such a
VM should not be added to the node group (block 591). If
adding the VM to that node group does not violate the node
group disjoint rule, the VM and its HEs are added to the
node group (block 592), and the VM is removed from the
Leftovers set. The operations of blocks 580,590,591 and 592
continue until all of the VMs in the Leftover set are
processed (block 570).

US 9,432,301 B2

7

In this example, V2 have a common HE with both NG1
and NG2, so V2 stays in the Leftover set. V3 has a common
HE with NG1 and by adding V3 to NG1 the disjoint rule of
node groups is not violated. So V3 is added to NG1 and the
addition of V3 brings in HE3 to NG1. V5 have a common
HE with both NG1 and NG2, so V5 stays in the Leftover set.
V6 has the same HEs as V3, so V6 is also added to NG1.

As a result, NG1(HE1, HE2, HE3)={V1, V3, V6}, NG2
(HE4, HE5)={V4} and Leftovers={V2, V5}. The node
groups NG1 and NG2 form a NG-set. The VMs in the
Leftovers set cannot be used by the service groups to be
configured on the node groups in the NG-set, because using
these VMs violate the disjoinness of the node groups and
therefore hardware redundancy is not guaranteed. However,
service groups that are not configured on the NG-set may use
the VMs in the Leftovers set.

The NG-set created from the method 500 can be used to
host service units of one or more service groups at the AMF
level. In the above example, NG1 and NG2 are disjoint node
groups of the NG-set and can be used to ensure hardware
redundancy of a service group or service groups configured
on the NG-set. Accordingly, the hosting node group attribute
of each service unit of a service group is set for each node
group of the NG-set.

For a given PLM configuration, different NG-sets may be
created using different methods. These different NG-sets can
be used for different service groups because hardware sepa-
ration should be enforced within each service group and not
necessarily between service groups. As mentioned previ-
ously, creating different NG-sets might not be possible in all
cases; in some scenarios, the only other possible NG-set
leads to having all nodes in one NG;j that is, the resulting
NG-set has only one node group which is not desirable.

FIG. 6 is a flow diagram illustrating a second method 600
for identifying disjoint node groups according to one
embodiment. The method 600 starts with initializing a set A
containing all VMs (block 610). The VMs that have maxi-
mum common HFEs are selected into a node group (block
620). The selected VMs are removed from set A.

In the example hardware dependency of FIG. 4, NG1 is
created to include V3 and V6 because V3 and V6 share the
most common HEs (i.e., HE2 and HE3). Thus, NG1(HE2,
HE3)={V3, V6}. At this point, A={V1, V2, V4, V5}.

The method 600 proceeds to determine whether any VMs
in set A have a common HE with any of the previously-
formed NGs (e.g., NG1) (block 630); if there is, the VM is
removed from set A and placed into a Leftovers set (block
640). The operations of blocks 620 to 640 continue until set
A becomes empty (block 660).

In the example, V1 and V2 are removed from set A and
put in the Leftovers set because V1 has HE2 in common
with NG1, and V2 has HE3 in common with NG1. At this
point, NG1(HE2,HE3)={V3, V6}, Leftovers={ V1, V2} and
A={V4, V5}.

Next, V4, V5 have one HE in common (HE4), so a new
node group NG2 is created for them. At this point, NG1
(HE2, HE3)={V3, V6}, NG2(HE1, HE4, HE5)={V4, V5},
A={} and Leftovers={V1, V2}.

When set A becomes empty, the method 600 proceeds to
handle the VMs in the Leftovers set. The VMs in the
Leftovers set are handled in the same way as in method 500.
For each VM in Leftovers set, the method 600 finds the node
group with which the VM has the maximum common HEs
(block 680), and checks whether adding the VM to that node
group violates the node group disjoint rule (block 690). If
adding the VM to a node group violates the node group
disjoint rule, such a VM should not be added to the node

10

15

20

25

30

35

40

45

50

55

60

8
group (block 691). If adding the VM to that node group does
not violate the node group disjoint rule, the VM and its HEs
are added to the node group (block 692), and the VM is
removed from the Leftovers set. The operations of blocks
680,690,691 and 692 continue until all of the VMs in the
Leftover set are processed (block 670).

In the example, V1, V2 cannot be added to NG1 or NG2
because adding them to either node group NG1 or NG2
violates the node group disjoint rule. Therefore,
Leftovers={V1, V2} in the end, which means V1 and V2
cannot be utilized.

The node groups (NG1 and NG2) resulted from both
method 500 and method 600 are disjoint, and can be used to
configure service units that require hardware redundancy.
Comparing the results of method 500 and method 600
applied to the hardware dependency table of FIG. 4, it can
be seen that different node groups and different Leftover sets
can be created from the same PLM configuration. This
means that if NG-set1 resulting from method 500 is used for
a service group, neither V2 or V5 can be used to configure
its service units. Using NG-set2 resulting from method 600
for another service group allows the use V5 for this service
group. However, V2 cannot be used for hardware redun-
dancy for either service group.

The NG-setl resulted from method 500 is: NG1(HE1,
HE2,HE3)={V1,V3,V6}, NG2(HE4,HE5)={V4} and
Leftovers={V2,V5}.

The NG-set2 resulted from method 600 is: NG1(HE2,
HE3)={V3,V6}, NG2(HE1,HE4,HE5)={V4, V5} and
Leftovers={V1,V2}.

FIG. 7 illustrates the NG-setl and NG-set2 based on the
results of these two methods. FIG. 7 shows how different
NG-sets can be used for different service groups. For clarity
the VMs of NG-setl and NG-set2 are shown separately, but
these VMs are the same set of VMs grouped into different
node groups for each NG-set. Further, it is shown in FIG. 7
different NG-sets have different Leftoves sets. Having dif-
ferent node groups and Leftover sets in the different NG-sets
allows for better utilization of the VMs when these VMs are
used to allocate service units of different service groups.

The mapping of a service group to a NG-set and the
mapping of a service unit to a node group can be defined in
one or more AMF configuration attributes. According to the
AMF information model, the object class SaAmfSU has a
configuration attribute named saAmfSUHostNodeOrNode-
Group, which specifies either a node or a node group. If a
node is specified, the service unit (instantiated from that
object class SaAm{SU) can only be instantiated on the node.
It a node group is specified, the service unit can only be
instantiated on one of the nodes of that node group. If
saAmfSUHostNodeOrNodeGroup is not provided, another
attribute named saAmfSGSuHostNodeGroup in the
SaAmfSG object class can be used analogously. If a node
group is configured for a service group, the AMF selects
nodes from this node group to instantiate the service units on
those nodes for the service group. In one embodiment, the
node group configuration attribute (e.g., saAmfSUHost-
NodeOrNodeGroup or saAmfSGSuHostNodeGroup) of ser-
vice units is used to ensure the placement of service units of
a service group on different hardware.

By configuring these attributes, the service units of each
service group can be distributed on disjoint node groups.
This way, when the AMF chooses a node of its configured
node group to instantiate each service unit in a service
group, the service units of that service group are instantiated
on different HEs.

US 9,432,301 B2

9

FIG. 8 illustrates a method 800 for generating disjoint
node groups for a node cluster according to one embodi-
ment. The use of disjoint node groups guarantees hardware
redundancy for each service group to be configured on the
node cluster. Each service group includes service units, and
each service unit is a unit of redundancy for services
provided and protected by the service group. The method
800 may be performed by a computer system, such as a
computer system 900 to be described below with reference
to FIG. 9. One or more parts of an embodiment of the
invention may be implemented using different combinations
of software, firmware, and/or hardware.

The method 800 begins with the computer system iden-
tifying a hardware dependency between virtual machines in
the node cluster and hardware elements to host the virtual
machines (810). A first node group set (NG set) of node
groups is formed using a first selection criterion to select the
virtual machines into different node groups based on the
hardware dependency, such that there is no common hard-
ware element between any two of the node groups in the first
NG set (820). The computer system then maps the first NG
set to a first set of the service groups (830); and maps
different node groups of the first NG set to different service
units in each service group of the first set of service groups
(840).

In one embodiment, a second NG set of node groups may
be formed using a second selection criterion to select the
virtual machines into different node groups based on the
hardware dependency. The second selection criterion is
different from the first selection criterion with respect to
characteristics of the hardware dependency used for select-
ing the virtual machines, such that there is no common
hardware element between any two of the node groups in the
second NG set. The second NG set is mapped to a second set
of the service groups that is non-overlapping with the first
set of the service groups. Different node groups of the
second NG set are mapped to different service units within
each service group in the second set of the service groups.

In one embodiment, additional NG sets may be formed
using additional selection criteria different from the first and
second selection criteria. For example, an additional selec-
tion criterion may be to select the VMs in set A according to
the order of the VMs listed in set A. Other selection criteria
may also be used.

FIG. 9 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 900
within which a set of instructions, for causing the machine
to perform any one or more of the methodologies discussed
herein, may be executed. The computer system 900 may be
a server computer, or any machine capable of executing a set
of instructions (sequential or otherwise) that specify actions
to be taken by that machine. Further, while only a single
machine is illustrated, the term “machine” shall also be
taken to include any collection of machines (e.g., comput-
ers) that individually or jointly execute a set (or multiple
sets) of instructions to perform any one or more of the
methodologies discussed herein.

The computer system 900 includes a processing device
902. The processing device 902 represents one or more
general-purpose processors, each of which can be: a micro-
processor, a central processing unit (CPU), a multicore
system, or the like. More particularly, the processing device
902 may be a complex instruction set computing (CISC)
microprocessor, reduced instruction set computing (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, processor implementing other instruction sets, or
processors implementing a combination of instruction sets.

10

15

20

25

30

35

40

45

50

55

60

65

10

The processing device 902 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network proces-
sor, or the like. In one embodiment, the processing device
902 is adapted to execute the operations of a configurator
922 which contains instructions executable by the processor
device 902, such that the computer system 900 is operative
to execute the methods 500, 600 and/or 800 of FIGS. 5, 6
and 8.

In one embodiment, the processor device 902 is coupled
to one or more memory devices such as: a main memory 904
(e.g., read-only memory (ROM), flash memory, dynamic
random access memory (DRAM) such as synchronous
DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a
secondary memory 918 (e.g., a magnetic data storage
device, an optical magnetic data storage device, etc.), and
other forms of computer-readable media, which communi-
cate with each other via a bus or interconnect 930. The
memory devices may also different forms of read-only
memories (ROMs), different forms of random access memo-
ries (RAMs), static random access memory (SRAM), or any
type of media suitable for storing electronic instructions. In
one embodiment, the memory devices may store the code
and data of the configurator 922. In the embodiment of FIG.
9, the configurator 922 may be located in one or more of the
locations shown as dotted boxes and labeled by the reference
numeral 922.

The computer system 900 may further include a network
interface device 908. A part or all of the data and code of the
configurator 922 may be transmitted or received over a
network 920 via the network interface device 908. Although
not shown in FIG. 9, the computer system 900 also may
include user input/output devices (e.g., a keyboard, a touch-
screen, speakers, and/or a display).

In one embodiment, the configurator 922 can be imple-
mented using code and data stored and executed on one or
more computer systems (e.g., the computer system 900).
Such computer systems store and transmit (internally and/or
with other electronic devices over a network) code (com-
posed of software instructions) and data using computer-
readable media, such as non-transitory tangible computer-
readable media (e.g., computer-readable storage media such
as magnetic disks; optical disks; read only memory; flash
memory devices as shown in FIGS. 9 as 904 and 918) and
transitory computer-readable transmission media (e.g., elec-
trical, optical, acoustical or other form of propagated sig-
nals—such as carrier waves, infrared signals). A non-tran-
sitory computer-readable medium of a given computer
system typically stores instructions for execution on one or
more processors of that computer system.

The operations of the methods of FIGS. 5, 6 and 8 have
been described with reference to the exemplary embodiment
of FIG. 9. However, it should be understood that the
operations of the methods of FIGS. 5, 6 and 8 can be
performed by embodiments of the invention other than those
discussed with reference to FIG. 9, and the embodiment
discussed with reference to FIG. 9 can perform operations
different from those discussed with reference to the methods
of FIGS. 5, 6 and 8. While the methods of FIGS. 5, 6 and 8
show a particular order of operations performed by certain
embodiments of the invention, it should be understood that
such order is exemplary (e.g., alternative embodiments may
perform the operations in a different order, combine certain
operations, overlap certain operations, etc.).

While the invention has been described in terms of several
embodiments, those skilled in the art will recognize that the

US 9,432,301 B2

11

invention is not limited to the embodiments described, can
be practiced with modification and alteration within the
spirit and scope of the appended claims. The description is
thus to be regarded as illustrative instead of limiting.

What is claimed is:

1. A method implemented by a computer system adapted
to generate disjoint node groups for a node cluster to thereby
guarantee hardware redundancy for each of a plurality of
service groups to be configured on the node cluster, wherein
each service group includes a plurality of service units, and
wherein each service unit is a unit of redundancy for services
provided and protected by the service group, the method
comprising the steps of:

identifying a hardware dependency between virtual

machines in the node cluster and hardware elements to
host the virtual machines;

forming a first node group set (NG set) of node groups

using a first selection criterion to select the virtual
machines into different node groups based on the
hardware dependency, such that there is no common
hardware element between any two of the node groups
in the first NG set;

mapping the first NG set to a first set of the service groups;

and

mapping different node groups of the first NG set to

different service units in each service group of the first
set of the service groups,

wherein the hardware dependency is defined in a Platform

Management (PL.M) Service configuration for the node
cluster, wherein the PLM configuration specifies a
containment relationship between the hardware ele-
ments and virtual machine monitors, and a dependency
relationship between the virtual machine monitors and
the virtual machines that allows migration of the virtual
machines at runtime.

2. The method of claim 1, wherein further comprising the
step of:

forming a second NG set of node groups using a second

selection criterion to select the virtual machines into
different node groups based on the hardware depen-
dency, wherein the second selection criterion is differ-
ent from the first selection criterion with respect to
characteristics of the hardware dependency used for
selecting the virtual machines, such that there is no
common hardware element between any two of the
node groups in the second NG set;

mapping the second NG set to a second set of the service

groups that is non-overlapping with the first set of the
service groups; and

mapping different node groups of the second NG set to

different service units within each service group in the
second set of the service groups.

3. The method of claim 1, wherein forming the first NG
set further comprises the step of: selecting a virtual machine
into a node group, wherein the selected virtual machine
depends on a minimum number of hardware elements
among the virtual machines to be selected.

4. The method of claim 1, wherein forming the first NG
set further comprises the step of: selecting at least two
virtual machines into a node group, wherein the at least two
virtual machines depend on a maximum number of common
hardware elements among the virtual machines to be
selected.

5. The method of claim 1, further comprising the steps of:

forming additional NG sets for the node cluster based on

the hardware dependency using additional selection
criteria different from the first selection criterion; and

10

15

20

25

30

35

40

45

50

55

60

65

12

mapping the additional NG sets to additional different

ones of the service groups.

6. A method implemented by a computer system adapted
to generate disjoint node groups for a node cluster to thereby
guarantee hardware redundancy for each of a plurality of
service groups to be configured on the node cluster, wherein
each service group includes a plurality of service units, and
wherein each service unit is a unit of redundancy for services
provided and protected by the service group, the method
comprising the steps of:

identifying a hardware dependency between virtual

machines in the node cluster and hardware elements to
host the virtual machines;

forming a first node group set (NG set) of node groups

using a first selection criterion to select the virtual
machines into different node groups based on the
hardware dependency, such that there is no common
hardware element between any two of the node groups
in the first NG set;

mapping the first NG set to a first set of the service groups;

mapping different node groups of the first NG set to

different service units in each service group of the first
set of the service groups; and

placing a virtual machine that has not yet been selected

into a leftovers set if the virtual machine depends on a
same hardware element as another virtual machine in a
previously-formed node group for a same NG set.

7. The method of claim 6, further comprising the step of:
placing each of the virtual machines into one of previously-
formed node groups, a newly-formed node group that is
disjoint from the previously-formed node groups, or the
leftovers set, until all of the virtual machines are placed.

8. The method of claim 6, wherein subsequent to placing
the virtual machine into the leftovers set, the method further
comprises the step of: adding the virtual machine from the
leftovers set into one of previously-formed node groups for
the same NG set if disjointness of the previously-formed
node groups is not violated.

9. The method of claim 1, wherein mapping the different
node groups further comprises the step of: setting an Avail-
ability Management Framework (AMF) configuration attri-
bute of each service unit to indicate the mapping between the
service unit and one of the node groups.

10. A computer system adapted to generate disjoint node
groups for a node cluster to thereby guarantee hardware
redundancy for each of a plurality of service groups to be
configured on the node cluster, wherein each service group
includes a plurality of service units, and wherein each
service unit is a unit of redundancy for services provided and
protected by the service group, the computer system com-
prising a processor and a memory, the memory containing
instructions executable by the processor whereby the com-
puter system is operative to:

identify a hardware dependency between virtual machines

in the node cluster and hardware elements to host the
virtual machines;

form a first node group set (NG set) of node groups using

a first selection criterion to select the virtual machines
into different node groups based on the hardware
dependency, such that there is no common hardware
element between any two of the node groups in the first
NG set;

map the first NG set to a first set of the service groups; and

mayp different node groups of the first NG set to different

service units in each service group of the first set of the
service groups,

US 9,432,301 B2

13

wherein the hardware dependency is defined in a Platform
Management (PL.M) Service configuration for the node
cluster, wherein the PLM configuration specifies a
containment relationship between the hardware ele-
ments and virtual machine monitors, and a dependency
relationship between the virtual machine monitors and
the virtual machines that allows migration of the virtual
machines at runtime.

11. The computer system of claim 10, wherein the com-
puter system is further adapted to:

form a second NG set of node groups using a second

selection criterion to select the virtual machines into
different node groups based on the hardware depen-
dency, wherein the second selection criterion is differ-
ent from the first selection criterion with respect to
characteristics of the hardware dependency used for
selecting the virtual machines, such that there is no
common hardware element between any two of the
node groups in the second NG set;

map the second NG set to a second set of the service

groups that is non-overlapping with the first set of the
service groups; and

map different node groups of the second NG set to

different service units within each service group in the
second set of the service groups.
12. The computer system of claim 10, wherein when
forming the first NG set, the computer system is further
adapted to select a virtual machine into a node group,
wherein the selected virtual machine depends on a minimum
number of hardware elements among the virtual machines to
be selected.
13. The computer system of claim 10, wherein when
forming the first NG set, the computer system is further
adapted to select at least two virtual machines into a node
group, wherein the at least two virtual machines depend on
a maximum number of common hardware elements among
the virtual machines to be selected.
14. The computer system of claim 10, wherein the com-
puter system is further adapted to:
form additional NG sets for the node cluster based on the
hardware dependency using additional selection crite-
ria different from the first selection criterion; and

map the additional NG sets to additional different ones of
the service groups.

20

30

40

14

15. A computer system adapted to generate disjoint node
groups for a node cluster to thereby guarantee hardware
redundancy for each of a plurality of service groups to be
configured on the node cluster, wherein each service group
includes a plurality of service units, and wherein each
service unit is a unit of redundancy for services provided and
protected by the service group, the computer system com-
prising a processor and a memory, the memory containing
instructions executable by the processor whereby the com-
puter system is operative to:

identify a hardware dependency between virtual machines

in the node cluster and hardware elements to host the
virtual machines;

form a first node group set (NG set) of node groups using

a first selection criterion to select the virtual machines
into different node groups based on the hardware
dependency, such that there is no common hardware
element between any two of the node groups in the first
NG set;

map the first NG set to a first set of the service groups;

mayp different node groups of the first NG set to different

service units in each service group of the first set of the
service groups; and

place a virtual machine that has not yet been selected into

a leftovers set if the virtual machine depends on a same
hardware element as another virtual machine in a
previously-formed node group for a same NG set.

16. The computer system of claim 15, wherein the com-
puter system is further adapted to place each of the virtual
machines into one of previously-formed node groups, a
newly-formed node group that is disjoint from the previ-
ously-formed node groups, or the leftovers set, until all of
the virtual machines are placed.

17. The computer system of claim 15, wherein subsequent
to placing the virtual machine into the leftovers set, the
computer system is further adapted to add the virtual
machine from the leftovers set into one of previously-
formed node groups for the same NG set if disjointness of
the previously-formed node groups is not violated.

18. The computer system of claim 10, wherein the com-
puter system is further adapted to set an Availability Man-
agement Framework (AMF) configuration attribute of each
service unit to indicate the mapping between the service unit
and one of the node groups.

#* #* #* #* #*

